Baryon Resonances studied with Photoproduction of Mesons

Crystal Ball, Crystal Barrel, TAPS collaborations

- Introduction
- Experiments
- Single Meson Production Channels
- Multiple Meson Production Channels
- Conclusions

B. Krusche, NUCLAT 08, Glasgow, April 2008
Structure of the Nucleon

- complex many body system
 - valence quarks
 - sea quarks
 - gluons

- models - effective dof’s:
 - 3 equivalent constituent quarks
 - quark - diquark models (fewer states)
 - quarks - flux tubes etc. (more states)
 - chiral soliton models (anti-decuplet states)
 - coupled channel dynamics (molecule-like states)

- comparison: known excited states - constituent quark model (Capstick & Roberts)

B. Krusche, NUCLAT 08, Glasgow, April 2008
low lying excited states

Notation:

\(L_{2I2J} : L=0(S),1(P),2(D),... \)

B. Krusche, NUCLAT 08, Glasgow, April 2008
Experimental Options:

- **Final states:**
 - single meson production:
 \[\gamma p \rightarrow p\pi, \eta, \eta', \omega; \Sigma K, \Sigma K^* \ldots \]
 - multiple meson production:
 \[\gamma p \rightarrow p\pi\pi, \pi\eta, \pi\omega \ldots \]

- **Observables:**
 - angular distributions
 \[\frac{d\sigma}{d\Omega} \]
 - Dalitz plots
 \[M(N, m_i), M(m_1, m_2) \]
 - polarization dof:
 - linearely pol. beams
 - circularly pol. beams
 - longitudinally pol. targets
 - transversely pol. targets
 - recoil polarization
 \[\rightarrow \Sigma, R, T \]
 \[\rightarrow E, G, H, F \]
 \[\rightarrow \ldots \]

- **Isospin: Neutron targets**
 - electromagnetic excitation
 - isospin dependent

- **Quasifree photoproduction**
 - (off the deuteron)

B. Krusche, NUCLAT 08, Glasgow, April 2008
polarisation degrees of freedom

Longitudinally polarised proton target ✓
Transversely polarised ✓

D. Watts et al., Edinburgh

Nucleon polarisation: scattering in carbon ✓
B. Krusche, NUCLAT 08, Glasgow, April 2008
Electron Stretcher Accelerator (ELSA)

- Booster synchrotron: 0.5 - 1.6 GeV
- Stretcher ring: 0.5 - 3.5 GeV
- Beamlines for SR experiments
- Medium energy physics experiments
- GDH
- Crystal Barrel
- Møller Polarimeter
- Compton Polarimeter
- Compton polarimeter
- LINAC 1 (20 MeV)
- LINAC 2 (26 MeV)
- EKS
- Electron stretcher accelerator (ELSA)
- Desy cavity
- Half cell of ELSA
- PETRA cavity
- DORIS cavity
- Tune jump quadrupole
- Superconducting solenoid
- Extraction septa
- Injection septa
- Skew quadrupoles
- Detector tests
- Möllers polarimeter
- Pol. e⁻ source (50 keV)
- Beamlines for SR experiments

Instruments:
- Dipole (horizontal)
- Dipole (vertical)
- Quadrupole
- Skew Quadrupole
- Sextupole
- Combined-Function Magnet
- Solenoid
- Radio Frequency
- Electron gun
- (26 MeV)
- (20 MeV)

Experiments:
- EKS: 0 m - 5 m - 10 m - 15 m
MAMI accelerator in Mainz

Mainz Microtron (MAMI)
continuous wave electron accelerator, max. beam energy 883 MeV

0. Stage: Linac (2.5 GHz, 3.45 MeV)

1.-3. Stage: Racetrack Microtrons:
- microbunches of 0.4ns
- linear accelerator structures
- constant B field ⇒ varying radii (18, 51, 90 return cycles)
- very efficient acceleration and continuous mode
- high current (0.1mA)

4. Stage: Harmonic Double Sided Microtron
maximum energy: 1.5 GeV

B. Krusche, NUCLAT 08, Glasgow, April 2008
experimental setups - Ball, Barrel and TAPS and ...

- **Bonn ELSA accelerator:**
 - Crystal Barrel (CsI), TAPS (BaF$_2$) forward wall, inner detectors
 - $E_\gamma \leq 3.5$ GeV, lin. pol.: available, circ. pol.: available

- **Mainz MAMI accelerator:**
 - Crystal Ball (NaJ), TAPS (BaF$_2$) forward wall, inner detectors
 - $E_\gamma \leq 0.8$ (1.5) GeV, lin. pol.: available, circ. pol.: available

B. Krusche, NUCLAT 08, Glasgow, April 2008
TAPS Crystal Ball - at MAMI

B. Krusche, NUCLAT 08, Glasgow, April 2008
η photoproduction from the nucleon at threshold:
- dominance of the $S_{11}(1535)$ resonance...

- total cross section

- expected energy dependence for resonances:
 $S_{11}(L_{NN\eta} = 0): \sigma \propto (E_\gamma - E_{thres})^{1/2}$
 $P_{11}(L_{NN\eta} = 1): \sigma \propto (E_\gamma - E_{thres})^{3/2}$
 $D_{13}(L_{NN\eta} = 2): \sigma \propto (E_\gamma - E_{thres})^{5/2}$

- strong dominance of $S_{11}(1535)$, background small
 (vector mesons, Born terms), some interference with $S_{11}(1650)$

B. Krusche, NUCLAT 08, Glasgow, April 2008
\(\eta \) photoproduction from the nucleon at threshold:
...and a tiny little bit of \(D_{13}(1520) \)

- angular distributions

\[
\frac{d\sigma}{d\Omega} = \frac{q_\eta}{k_\gamma} \left[A + B \cos(\Theta^*) + C \cos^2(\Theta^*) \right]
\]

\(\Rightarrow b_\eta(D_{13}) = 0.23 \pm 0.04 \% \)

(Tiator et al., Chiang et al.)

B. Krusche, NUCLAT 08, Glasgow, April 2008
target asymmetry at threshold

- measured target asymmetries

A. Bock et al. PRL 81 (1998) 534

![Graphs showing target asymmetries at different energies](image1)

- target asymmetry enforces 'unnatural' phase between multipoles related to $D_{13}(1520)$ and $S_{11}(1535)$

(L. Tiator et al., PRC60 (1999) 035210)

- Same problem in polarization observables from electroproduction

(H. Merkel et al. PRL 99 (2007) 132301)

- isobar models etc. cannot reproduce the observed 'node'

B. Krusche, NUCLAT 08, Glasgow, April 2008
polarization observables in η photoproduction

with phase rotation

on a quasi-free proton

on a quasi-free neutron

only $\pm 10\%$

up to 30%

L. Tiator, priv. com.
resonances coupling to η photoproduction

branching ratios and elm. couplings (PDG):

<table>
<thead>
<tr>
<th>state</th>
<th>b_η [%]</th>
<th>$A^p_{1/2}$</th>
<th>$A^p_{3/2}$</th>
<th>$A^n_{1/2}$</th>
<th>$A^n_{3/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{13}(1520)$</td>
<td>0.23±0.04</td>
<td>-24</td>
<td>166</td>
<td>59</td>
<td>139</td>
</tr>
<tr>
<td>$S_{11}(1535)$</td>
<td>30 - 55</td>
<td>90</td>
<td></td>
<td>-46</td>
<td></td>
</tr>
<tr>
<td>$S_{11}(1650)$</td>
<td>3 - 10</td>
<td>53</td>
<td></td>
<td>-15</td>
<td></td>
</tr>
<tr>
<td>$D_{15}(1675)$</td>
<td>0 ± 1</td>
<td>19</td>
<td>15</td>
<td>-43</td>
<td>-58</td>
</tr>
<tr>
<td>$F_{15}(1680)$</td>
<td>0 ± 1</td>
<td>-15</td>
<td>133</td>
<td>29</td>
<td>-33</td>
</tr>
<tr>
<td>$D_{13}(1700)$</td>
<td>0 ± 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{11}(1710)$</td>
<td>6.2±1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{13}(1720)$</td>
<td>4±1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $D_{15}(1675)$ has stronger electromagnetic coupling to the neutron than to the proton but parameters quite uncertain:
 $A^p_{1/2}=6 - 34, A^p_{3/2}=3-30, A^n_{1/2}=-(21-57), A^n_{3/2}=-(30-77)$
 $b_\eta=0 - 1\%$ (PDG), $b_\eta=17\%$ (ETA-MAID, Chiang et al.)
- interference structure in S_{11}-sector?

Data:
- TAPS: B. Krusche et al., PRL74 (195) 3736
- GRAAL: F. Renard et al., PLB528 (2002) 215
- CLAS: M. Dugger et al., PRL89 (2002) 222002
- Crystal Barrel: V. Crede et al., PRL94 (2005) 012004

B. Krusche, NUCLAT 08, Glasgow, April 2008
what is expected for $n(\gamma, \eta)n$ - why is it interesting?

- total cross sections for proton and neutron from MAID model with and without $D_{15}(1675)$ (Eta-MAID, W.T. Chiang et al., NPA 700 (2002) 429)
- previous data from MAMI only at lower incident photon energies

predictions from chiral soliton models: P_{11}-like state of the anti-decuplet has strong photon-coupling to the neutron and large ηN decay branching ratio
quasifree η-photoproduction off the deuteron (PhD thesis I.Jaegle)

- cross section for $\gamma n \rightarrow \eta n$ from two analyses with very different systematics:
 1. η in coincidence with recoil neutrons
 2. Difference of inclusive cross section and η in coincidence with recoil protons

![Graph showing η-photoproduction cross sections vs. E_γ](image)

$\sigma[\mu b]$ vs. $E_\gamma[\text{MeV}]$ for different channels and models:
- $\sigma(\text{NN$\eta$X})$
- $\sigma(\text{n$p$}$eta$)$
- $\sigma(\text{n$p$}$eta$)$ (Weiss et al.)
- $\sigma(\eta\pi)$
- $\sigma(p$eta$)$
- $\sigma(n$eta$)$
- $\sigma(n$p$ eta$)$-$\sigma(p$eta$)$
- $\sigma(\eta\pi)$

σ_{n/σ_p} for different analyses:
- Weiss et al.
- MAID
- Shklyar et al.

B. Krusche, NUCLAT 08, Glasgow, April 2008
comparison of free and quasi-free cross sections

- quasi-free total cross sections corrected for Fermi smearing with correction factors calculated by folding known free proton cross section, respectively ETA-MAID prediction with momentum distribution of bound nucleons.

result:
- in $S_{11}(1535)$ peak below 0.9 GeV perfect agreement between free and quasi-free proton data and quasi-free neutron data scaled by 2/3.

Fit parameters for S_{11} Breit-Wigner:
- proton:
 $W=1538$ MeV, $\Gamma=157$ MeV, $A_{1/2}^p=103$
- neutron:
 $W=1538$ MeV, $\Gamma=148$ MeV, $A_{1/2}^n=85$

- narrow structure around 1 GeV in neutron/proton ratio, width is only upper bound

B. Krusche, NUCLAT 08, Glasgow, April 2008
angular distributions

$\cos(\Theta_\eta) \cos(\Theta_{\eta^*})$

- $\eta p, qf$
- $\eta n, qf$
- $\eta p, \text{free folded}$

Comparison with models

$E_\gamma = 800 \text{ MeV}, W = 1542 \text{ MeV}$

$E_\gamma = 1000 \text{ MeV}, W = 1660 \text{ MeV}$

B. Krusche, NUCLAT 08, Glasgow, April 2008
de-folding of Fermi smearing

- for events with neutron in TAPS $(\cos(\Theta^*_n) < -0.1)$
 neutron energy from time-of-flight
- comparsion: W from photon energy (Fermi smeared) -
 W from nucleon - meson
 4-vectors (resolution smeared)
- de-folded proton cross section similar to free proton,
 de-folded neutron cross section shows structure around 1.7 GeV:
 position: $W = 1683$ MeV
 width: $\Gamma = 60 \pm 20$ MeV
 (resolution dominated)
Double Polarisation Experiments at ELSA (U. Thoma, priv. com.)

Online spectra: circularly polarised beam, longitudinally polarised target

\(\gamma p \rightarrow p \eta \):

\(\eta \rightarrow \gamma \gamma \)

⇒ First asymmetries observed
resonances in photoproduction of η'-mesons

- experiments: ‘resonance’ like structure around 1.8 GeV
- known resonances ($\sqrt{s} \approx 2$ GeV):
 $P_{13}(1900)$ (*), $F_{17}(1990)$ (**),
 $F_{15}(2000)$ (**), $D_{13}(2080)$ (**),
 $S_{11}(2090)$ (*), $P_{11}(2100)$ (*);
 no branching ratios known
- quark model predictions:
 many states, strongest coupling of η' to: $S_{11}(2090)$, $D_{13}(2080)$

analyses of previous photoproduction data:
- Mukhopadhyay et al. (1995):
 effective Lagrangian approach fitted to old data:
 dominance of $D_{13}(2080)$ resonance
- Plötzke et al. (1998):
 BW resonances, SAPHIR 5-track events:
 dominance of S_{11} and P_{11} resonances
 with poles close to 2 GeV
- Link (2000):
 Regge parameterization, SAPHIR 3-track events:
 dominance of Regge exchange, possibly S_{11} state at threshold
- Sibirtsev et al. (2003):
 SAPHIR data (3-track events renormalized)
 dominance of ρ, ω poles in t-channel,
 small contribution from $S_{11}(1535)$ resonance
- Chiang et al. (2003):
 reggeized model, SAPHIR 5-track events:
 strong contribution from Regge exchange,
 S_{11} with pole around 1950 MeV,
 possibly P_{11} and/or P_{13} (poles close to 1950 MeV)

- Dugger et al. (CLAS-data, 2006):
 $S_{11}(1535)$ and $P_{11}(1710)$ resonances and t-channel
- Nakayama and Haberzettl (2006):
 S_{11}, P_{11}, P_{13}, D_{13} resonances and t-channel

B. Krusche, NUCLAT 08, Glasgow, April 2008
quasifree η'-photoproduction off the deuteron (PhD thesis I. Jaegle)

- same game as before...preliminary results

- at high incident photon energies t-channel dominated, at low energies resonance contributions?

B. Krusche, NUCLAT 08, Glasgow, April 2008
double pion photoproduction: the different charge channels

- $\gamma p \rightarrow p\pi^+\pi^-$
- $\gamma p \rightarrow n\pi^0\pi^+$
- $\gamma p \rightarrow p\pi^0\pi^0$

B. Krusche, NUCLAT 08, Glasgow, April 2008
double π^0 photoproduction

interpretation by Laget model:

BoGa analysis of most recent Mainz and Bonn data:

P$_{11}$ small, D$_{13}$ strong, D$_{33}$ strong, double-bump structure from interference between D$_{11}(1520)$ and D$_{33}(1700)$
identification of double π^0-channel

- invariant mass spectrum
- missing mass spectra

B. Krusche, NUCLAT 08, Glasgow, April 2008
total cross sections: $\gamma p \rightarrow n\pi^0\pi^+$, $\gamma p \rightarrow p\pi^0\pi^0$

- $\gamma p \rightarrow n\pi^0\pi^+$ cross section
- $\gamma p \rightarrow p\pi^0\pi^0$ cross section

B. Krusche, NUCLAT 08, Glasgow, April 2008
invariant mass distributions: $\pi^0\pi^+ - n$

- $\pi^0 - n$ invariant mass
- $\pi^+ - n$ invariant mass
invariant mass distributions: $\pi^0\pi^0 - p$

- $\pi^0 - n$ invariant mass
- threshold region

B. Krusche, NUCLAT 08, Glasgow, April 2008
invariant mass distributions: \(\pi^0\pi^0, \pi^0\pi^+ \)

- \(\pi^0 - \pi^+ \) invariant mass
- \(\pi^0 - \pi^0 \) invariant mass

B. Krusche, NUCLAT 08, Glasgow, April 2008
similar results for $\gamma p \rightarrow \pi^0 \eta p$

- **Identification**
- **Invariant mass distributions**
- **Total cross section**

Identification

- Dominant final states:
 - $\Delta(1232)\eta$
 - $N(1535)\pi$
 - $p\Delta(980)$

Invariant mass distributions

Total cross section

B. Krusche, NUCLAT 08, Glasgow, April 2008
beam-helicity asymmetry (circularly pol. beam)
final results: $\gamma p \rightarrow n\pi^0\pi^+$, $\gamma p \rightarrow p\pi^0\pi^0$ (PhD thesis F.Zehr)

$\gamma p \rightarrow n\pi^0\pi^+$

$\gamma p \rightarrow p\pi^0\pi^0$

---: Fix et al.
- - -: Roca et al., full model
.....: Roca et al., w/o. $D_{13} \rightarrow N\rho$

---: Fix et al.
- - -: Bonn/Gatchina PWA

B. Krusche, NUCLAT 08, Glasgow, April 2008
π⁰π⁰ photoproduction off the deuteron

Preliminary

γn→π⁰π⁰n measured in 2 different ways:

- π⁰π⁰ in coincidence with the recoil neutron
- difference of inclusive cross section and in coincidence with the recoil proton

B. Krusche, NUCLAT 08, Glasgow, April 2008
Conclusions

Very active experimental program for investigation of Baryon Resonances at ELSA and MAMI exploring:

- High quality tagged photon beams
- (Almost) 4π detectors for photons, charged, and neutral particles
- Linearly and circularly polarized photon beams
- Longitudinally and transversely polarized targets
- Polarization of recoil protons
- Many different single and multiple meson production reactions
- Deuterium targets as quasi-free neutron targets

B. Krusche, NUCLAT 08, Glasgow, April 2008
Summary

exclusive, quasifree η-photoproduction off deuteron:
- large difference for resonance contributions to $p(\gamma, \eta)p$ and $n(\gamma, \eta)n$
- narrow structure in excitation function off neutron
- next steps: (double) polarization observables, better neutron ToF resolution

η'-photoproduction off the deuteron:
- large difference in total cross section and shape of angular distributions around cross section maximum for free proton

double pion photoproduction
- precise invariant mass distributions for $\pi^0\pi^0$ and $\pi^0\pi^+$
- precise beam-helicity asymmetries for $\pi^0\pi^0$ and $\pi^0\pi^+$
- first results for $n(\gamma, \pi^0\pi^0)n$: peak in cross section ratio around 900 MeV

B. Krusche, NUCLAT 08, Glasgow, April 2008